Galileo satellite payload testing

31 2005

Galileo satellite payload testing

View 133.2K

word 530 read time 2 minutes, 39 Seconds

ESA: Testing of the first Galileo satellites, which form part of what is called the Galileo System Test Bed (GSTB), is under way. One of the two satellites arrived at the ESA-ESTEC test facilities in late July, while the payload of the other spacecraft is now being tested in Italy.

The payload of the GTSB-V2/B satellite, being developed by Galileo Industries, is just completing a first series of tests at the Alenia Spazio facilities in Rome. In particular, the specially developed navigation payload has been subjected to a range of extreme temperatures in vacuum. This simulation of the space environment realistically validates the payload's performance in orbit.
The campaign will continue with mechanical testing. The payload's functionality will have to be proven while exposed to strong vibration, high acoustic noise levels and shock, as encountered during launch. Whereas the mechanical investigations can be considered standard satellite testing, the first validation in the thermal vacuum environment had been awaited with special interest, as it has given early feedback on the in-orbit performance of the newly developed payload.

New technologies

The GSTB-V2/B satellite features several new equipment technologies that are considered cornerstones in the development of the Galileo Navigation Payload.

One of the most prominent and also most critical developments is the Passive Hydrogen Maser (PHM), an extremely accurate clock that has been developed under ESA contract. The PHM will be the first of its kind to be flown in space and have its performance tested in a realistic environment. The GSTB-V2/B PHM will be the most accurate atomic clock in orbit and will, with its breakthrough performance, open the door for a wide range of high precision navigation applications as targeted by the Galileo System. The higher timekeeping accuracy will enable better performance than current global navigation satellite systems.

The results obtained during the first testing in a simulated space environment are very promising and constitute a major milestone in the validation of technology specifically developed for the Galileo System.

The tests included simultaneous transmission on three Galileo carrier frequencies (L1, E5, and E6 bands) where, besides the PHM, two Rubidium atomic clocks can be selected in combination with the onboard signal generation unit to produce representative Galileo signals.

The recent data and experience gained with the GSTB-V2/B test campaign are being directly transferred into the development of the Galileo System since Galileo Industries is also the Prime Contractor to ESA for the development and roll out of the Galileo infrastructure.

The completed GSTB-V2/B satellite will weigh 485 kg. Its modular design consists of two cubes, one dedicated to the payload and the other, known as the platform module, to the spacecraft's control and operations subsystems. The overall external dimensions (excluding the deployable solar arrays) will be 1 m É” 1 m É” 2.4 m. The solar arrays will generate about 940 Watts of power. The spacecraft is designed for a lifetime of three years in the Galileo orbit (24 000 km).

The other Galileo satellite, GSTB-V2/A, is being developed by Surrey Satellite Technology Limited of the UK. The spacecraft test campaign is continuing in the ESA ESTEC Test Centre, where thermal balance and thermal vacuum testing have been completed.

Source by esaint

LSNN is an independent editor which relies on reader support. We disclose the reality of the facts, after careful observations of the contents rigorously taken from direct sources, we work in the direction of freedom of expression and for human rights , in an oppressed society that struggles more and more in differentiating. Collecting contributions allows us to continue giving reliable information that takes many hours of work. LSNN is in continuous development and offers its own platform, to give space to authors, who fully exploit its potential. Your help is also needed now more than ever!

In a world, where disinformation is the main strategy, adopted to be able to act sometimes to the detriment of human rights by increasingly reducing freedom of expression , You can make a difference by helping us to keep disclosure alive. This project was born in June 1999 and has become a real mission, which we carry out with dedication and always independently "this is a fact: we have never made use of funds or contributions of any kind, we have always self-financed every single operation and dissemination project ". Give your hard-earned cash to sites or channels that change flags every time the wind blows , LSNN is proof that you don't change flags you were born for! We have seen the birth of realities that die after a few months at most after two years. Those who continue in the nurturing reality of which there is no history, in some way contribute in taking more and more freedom of expression from people who, like You , have decided and want to live in a more ethical world, in which existing is not a right to be conquered, L or it is because you already exist and were born with these rights! The ability to distinguish and decide intelligently is a fact, which allows us to continue . An important fact is the time that «LSNN takes» and it is remarkable! Countless hours in source research and control, development, security, public relations, is the foundation of our basic and day-to-day tasks. We do not schedule releases and publications, everything happens spontaneously and at all hours of the day or night, in the instant in which the single author or whoever writes or curates the contents makes them public. LSNN has made this popular project pure love, in the direction of the right of expression and always on the side of human rights. Thanks, contribute now click here this is the wallet to contribute

Similar Articles / Galileo ...d testing